A Feed-Forward Neural Networks-Based Nonlinear Autoregressive Model for Forecasting Time Series Modelo Auto Regresivo no Lineal Basado en Redes Neuronales Multicapa para Pronóstico de Series Temporales

نویسندگان

  • Julián A. Pucheta
  • Cristian M. Rodríguez Rivero
  • Martín R. Herrera
  • Carlos A. Salas
  • Daniel Patiño
  • Benjamín R. Kuchen
چکیده

In this work a feed-forward NN based NAR model for forecasting time series is presented. The learning rule used to adjust the NN weights is based on the LevenbergMarquardt method. In function of the long or short term stochastic dependence of the time series, we propose an online heuristic law to set the training process and to modify the NN topology. The approach is tested over five time series obtained from samples of the Mackey-Glass delay differential equations and from monthly cumulative rainfall. Three sets of parameters for MG solution were used, whereas the monthly cumulative rainfall belongs to two different sites and times period, La Perla 1962-1971 and Santa Francisca 200-2010, both located at Córdoba, Argentina. The approach performance presented is shown by forecasting the 18 future values from each time series simulated by a Monte Carlo of 500 trials with fractional Gaussian noise to specify the variance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Feed-Forward Neural Networks-Based Nonlinear Autoregressive Model for Forecasting Time Series

Palabras clave Redes neuronales, pronóstico de series temporales, parámetro de Hurst, ecuación Mackey-Glass.

متن کامل

Un Modelo para la Prediccion de Recidiva de Pacientes Operados de Cancer de Mama (CMO) Basado en Redes Neuronales

La predicción de recidiva en pacientes que han sido operados de cáncer de mama juega un papel muy importante en tareas médicas como el diagnostico y la planificación del tratamiento que hay que realizarle al mismo. En la actualidad, los expertos médicos están llevando a cabo estas tareas usando técnicas no numéricas. Las redes neuronales artificiales se muestran como una herramienta potente par...

متن کامل

Utilización de redes neuronales en la caracterización, modelación y predicción de series temporales económicas en un entorno complejo

En el presente trabajo se realiza una revisión de las principales implicaciones del nuevo enfoque de la complejidad, y de sus relaciones con la no linealidad y la teoría del caos para el estudio de los problemas económicos. En particular, se analiza la incidencia del cambio de enfoque en el análisis de series temporales económicas, haciendo especial hincapié en la aplicación de la metodología d...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011